Exercise 7

Repeat Exercise 5(a) for the data $u(x, 0)=0, \frac{\partial u}{\partial t}(x, 0)=-2 x e^{-x^{2}},-\infty<x<\infty$.

Solution

The aim is to solve the wave equation on the whole line for all time subject to initial conditions.

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad-\infty<x<\infty,-\infty<t<\infty \\
& u(x, 0)=f(x)=0 \\
& \frac{\partial u}{\partial t}(x, 0)=g(x)=-2 x e^{-x^{2}}
\end{aligned}
$$

Start with the general solution of the wave equation.

$$
u(x, t)=F(x+c t)+G(x-c t)
$$

Differentiate it with respect to t.
$\frac{\partial u}{\partial t}=F^{\prime}(x+c t) \cdot \frac{\partial}{\partial t}(x+c t)+G^{\prime}(x-c t) \cdot \frac{\partial}{\partial t}(x-c t)=F^{\prime}(x+c t) \cdot(c)+G^{\prime}(x-c t)(-c)=c F^{\prime}(x+c t)-c G^{\prime}(x-c t)$
Now apply the given initial conditions.

$$
\begin{gathered}
u(x, 0)=F(x)+G(x)=f(x) \\
\frac{\partial u}{\partial t}(x, 0)=c F^{\prime}(x)-c G^{\prime}(x)=g(x)
\end{gathered}
$$

This is a system of two equations with two unknowns, F and G, that can be solved for.
Differentiate both sides of the first equation.

$$
\left\{\begin{aligned}
F^{\prime}(x)+G^{\prime}(x) & =f^{\prime}(x) \\
c F^{\prime}(x)-c G^{\prime}(x) & =g(x)
\end{aligned}\right.
$$

Multiply both sides of the first equation by c.

$$
\left\{\begin{array}{l}
c F^{\prime}(x)+c G^{\prime}(x)=c f^{\prime}(x) \\
c F^{\prime}(x)-c G^{\prime}(x)=g(x)
\end{array}\right.
$$

Adding the respective sides of these equations eliminates G and gives

$$
2 c F^{\prime}(x)=c f^{\prime}(x)+g(x) .
$$

Divide both sides by $2 c$.

$$
F^{\prime}(x)=\frac{1}{2} f^{\prime}(x)+\frac{1}{2 c} g(x)
$$

Integrate both sides with respect to x.

$$
F(x)=\frac{1}{2} f(x)+\frac{1}{2 c} \int^{x} g(s) d s+C_{1}
$$

Subtracting the respective sides of these equations instead eliminates F and gives

$$
2 c G^{\prime}(x)=c f^{\prime}(x)-g(x)
$$

Divide both sides by $2 c$.

$$
G^{\prime}(x)=\frac{1}{2} f^{\prime}(x)-\frac{1}{2 c} g(x)
$$

Integrate both sides with respect to x.

$$
\begin{aligned}
G(x) & =\frac{1}{2} f(x)-\frac{1}{2 c} \int^{x} g(s) d s+C_{2} \\
& =\frac{1}{2} f(x)+\frac{1}{2 c} \int_{x} g(s) d s+C_{2}
\end{aligned}
$$

Now that F and G are known, the solution to the initial value problem can be written.

$$
\begin{aligned}
u(x, t) & =F(x+c t)+G(x-c t) \\
& =\left[\frac{1}{2} f(x+c t)+\frac{1}{2 c} \int^{x+c t} g(s) d s+C_{1}\right]+\left[\frac{1}{2} f(x-c t)+\frac{1}{2 c} \int_{x-c t} g(s) d s+C_{2}\right] \\
& =\frac{1}{2}[f(x+c t)+f(x-c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(s) d s+C_{3}
\end{aligned}
$$

The integration constant is set to zero to satisfy $u(x, 0)=f(x)$.

$$
u(x, t)=\frac{1}{2}[f(x+c t)+f(x-c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(s) d s
$$

In this exercise

$$
f(x)=0 \quad \text { and } \quad g(x)=-2 x e^{-x^{2}}
$$

so

$$
u(x, t)=\frac{1}{2}(0+0)+\frac{1}{2 c} \int_{x-c t}^{x+c t}\left(-2 s e^{-s^{2}}\right) d s
$$

Make the following substitution.

$$
\begin{aligned}
v & =-s^{2} \\
d v & =-2 s d s
\end{aligned}
$$

As a result,

$$
\begin{aligned}
u(x, t) & =\frac{1}{2 c} \int_{-(x-c t)^{2}}^{-(x+c t)^{2}} e^{v} d v \\
& =\left.\frac{1}{2 c} e^{v}\right|_{-(x-c t)^{2}} ^{-(x+c t)^{2}} \\
& =\frac{1}{2 c}\left[e^{-(x+c t)^{2}}-e^{-(x-c t)^{2}}\right] .
\end{aligned}
$$

Below are plots of $u(x, t)$ versus x over $-15<x<15$ for $t=0,1,2,4,6,8$ with $c=1$.

